Name and Surname:

Grade/Class

: 10/.....

Mathematics Teacher:

SLT /file

Hudson Park High School

MATHEMATICS

June Exammination

Marks

100

Date

May : 28 June 2025

Time

2 hour

Examiner : VNT

Moderator(s) : SLT; PHL; SBL; VPT

INSTRUCTIONS

- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- Number your answers clearly and accurately, exactly as they appear on the question paper. 2.
- **NB** Leave 2 lines open between each of your answers. 3.
 - Start each new Question at the top of a page.
- **NB** Hand in your submission in the following manner: 4.
 - Answer on lined paper. Answer pages MUST be stapled together.
 - > PLEASE staple your question paper behind your answer script.
- 5. Employ relevant formulae and show all working out. Answers alone *may* not be awarded full marks.
- (Non-programmable and non-graphical) Calculators may be used, unless their usage is 6. specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- If (Euclidean) GEOMETRIC statements are made, REASONS must be stated appropriately. 8.
- 9. Answer in blue or black ink. Work that is done in pencil will not be eligible for queries.

QUESTION 1

CALCULATORS MAY NOT BE USED IN THIS QUESTION

- Between which two consecutive integers does $\sqrt{72}$ lie? Show all your relevant working out. (2)
- 1.2 Convert 3,17 into an improper fraction in its simplest form. All of your working out must be shown. (3)
- 1.3 Given : $\sqrt{\frac{1}{2x+5}}$

For which value(s) of x will the given expression be

1.3.2
$$\operatorname{Non}$$
 – Real (2)

1.4 If
$$3x - \frac{1}{x} = 5$$
, determine the value of $9x^2 + \frac{1}{x^2}$ (2)

[10]

QUESTION 2

2.1 Simplify the following as far as possible:

$$2.1.1. \quad \left(x^{\frac{1}{y}} + y^{\frac{1}{x}}\right)^2 \tag{2}$$

$$2.1.2 \qquad \frac{3^{2n} \cdot 2^n}{18^{n+2} + 18^{n-2}} \tag{4}$$

2.2 Show that
$$(2x-1)^2 - (x-3)^2$$
 can be simplified to $(ax+b)(cx-d)$ (3)

2.3 Simplify fully:
$$\frac{\frac{3y}{x+y}}{\frac{3}{x+y} - \frac{3}{x-y}}$$
 (4)

2.4 Factorise fully:

$$2.4.1 \quad -4x^2 + 10x + 6 \tag{2}$$

$$2.4.2 x(x-1) - y(y-1) (4)$$

$$2.4.3 8x^4 - \frac{1}{2}y^4 (3)$$

$$2.4.4 2(a-2b)x^3 - 54(2b-a)y^3 (3)$$

[25]

QUESTION 3

3.1 Solve for x:

$$3.1.1. \quad 3x - 7 = 3x + 2 \tag{1}$$

$$3.1.2 x^2 = 5x (3)$$

$$3.1.3 (x-2)^2 - 10 = 0 (4)$$

$$3.1.4 2.3^{x-4} - 12 = 0 (3)$$

$$3.1.5 14x^{\frac{3}{7}} + 8x^{\frac{6}{7}} = 15 (4)$$

3.2 Given:
$$-\frac{1}{3} \le \frac{-1-3x}{2} < 7$$
 (where $x \in \mathbb{R}$)

3.2.1 Solve the given inequality for
$$x$$
. (3)

3.3 Solve for x and y:

$$2x + 3y = -10 \text{ and } 5x - y = 43 \tag{4}$$

QUESTION 4 [23]

4.1 Consider the following number sequence

4.1.2 Determine an expression for the general term of the sequence,
$$T_n$$
. Simplify your answer fully. (2)

4.1.4 Determine the 80th term in the following sequence

$$\sqrt{2}$$
; π ; -111; -104; -97; -90;... (2)

4.2 Calculate the value(s) of x for which

$$x^2 - 2x$$
; $2x^2 + 4x$; $4x^2 - 24$

Will be an arithmetic sequence. (4)

[11]

QUESTION 5

5.1 Consider the following figure where $CA \perp AB$ and $AD \perp CB$

- 5.1.1 In terms of AC, CB, CD, DB, AD and/or AB, write down TWO ratios for sin 28° (2)
- 5.1.2 Determine the size of angle $A\hat{C}B$

(1)

5.1.3 Hence, calculate the length of CD if AD = 15cm

(2)

5.2 CALCULATORS MAY NOT BE USED IN THIS QUESTION

Given $3\cos\theta + 2 = 0$ and $180^{\circ} < \theta < 360^{\circ}$

- 5.2.1 Sketch a driagam for the above equation in the correct quadrant. Show all relevant details in the diagram (3)
- 5.2.2 Hence, calculate the value of $\sin \theta$

(1)

5.3 Given : $\tan 28^{\circ} = k$, (k > 0)

Use a diagram to determine

 $5.3.1 \quad \sec 28^{\circ}$ (3)

 $5.3.2 \sin 62^{\circ}$ (1)

5.4 CALCULATORS MAY NOT BE USED IN THIS QUESTION

5.4.1 Draw the special triangles used for dealing with angles of

(a) 30° and 60° (1)

(b) 45°

5.4.2 Hence, evaluate

(a) $\tan 30^{\circ}$

(b) $\csc 45^{\circ}$

5.5 If $\theta = 55^{\circ}$, determine

$$\frac{2\tan^2\theta}{\sec\theta + 2} \tag{2}$$

5.6 Solve for θ :

5.6.1
$$8\sin\left(\frac{\theta}{3} - 10^{\circ}\right) - 3 = 0$$
 { $0^{\circ} < \left(\frac{\theta}{3} - 10^{\circ}\right) < 90^{\circ}$ } (3)

5.6.2
$$3 \cot \theta = \sin 87.7^{\circ}$$
 $\{0^{\circ} < \theta < 90^{\circ}\}$ (3)

[25]

QUESTION 6

RQ is a vertical pole. The foot of the pole Q is on the same horizontal plane as P and S. The pole is anchored to the floor by ropes RP and RS where the angle of depression from R down to P is 47°. QS = 17m and RP =21m

- 6.1.1 Write down, with a reason the size of θ (2)
- 6.1.2 Calculate the height of the pole (2)
- 6.1.3 Hence, the size of the angle $P\hat{S}R$ (2)

[6]

TOTAL 100 MARKS

